Improving vibration comfort on modern crawler tractors

Pessina D., Facchinetti D.
Dept. of Agricultural and Environmental Sciences - University of Milan
Via Celoria, 2 - 20133 Milan, Italy
phone +39 02 503 16876; fax +39 02 503 16845
e-mail corresponding author: domenico.pessina@unimi.it

Abstract
Many means have been recently introduced on modern agricultural tractors to improve the vibration comfort; apart the driver’s seat suspension, cab/floor and front axle pneumatic or hydraulic suspensions systems were fitted. Nevertheless, these device have been applied only on new high-power wheeled tractor models. Unfortunately, the situation on agricultural crawler tractors is not so good: no cab or front axle suspension are provided, and sometimes (also on new tractor models) no or a poor seat suspension is fitted; as a consequence, the vibration levels measured on board of crawler tractors often widely exceed the limit provided by the Standards. The crawler tractor manufacturers try to reduce the vibration transmission by isolating the driver’s place with silent-blocks and improving the seat suspension quality. The vibration levels at the driver’s place of a group of medium power crawler tractors have been recorded, differing the models examined for the track support rollers number, the seat suspension type and stiffness and the coupling of a hitched implement. The seat suspension type and its correct adjustment (in relation to the driver’s mass) influence remarkably the vibration level. Similarly, the increase of the track roller support number (from 5 to 6) improved the situation, probably due to a better stability of the machine, especially when travelling at high speed on hard surface. On the contrary, an implement coupled at the rear 3-point linkage does not change remarkably the vibration comfort during transport, because the mass distribution of the crawler tractor does not result significantly affected.

Keywords: vibration, crawler tractor, seat suspension

Introduction
In the agricultural sector, working conditions are frequently poor and drivers of agricultural self-propelled machinery are still at risk of high levels of vibration exposure (Scarlett et al., 2007). The European Union Directive No. 2002/44/CE (European Commission, 2002) defines the criteria for measuring and then calculating the level of vibration. National guidelines have been formulated to reduce the risk and are reported in the Italian Decree No. 81/2008. In order to define minimum health and safety requirements in the work place, the Decree also specifies the most suitable national standard to be adopted. The working conditions and the manufacturing characteristics of the machinery can have a big impact on vibration levels such as the travelling speed and the soil surface profile (Servadio et al., 2007). These include the travelling speed and the soil surface profile. In fact, very high acceleration values are normally recorded when carrying out agricultural operations at high speed along hard and irregular surfaces (Solecki, 2007). On modern agricultural tractors, many devices have recently been fitted to improve vibration comfort. Apart from the driver’s seat, equipped with a passive or sometimes with an active electronically controlled pneumatic suspension, pneumatic or hydraulic suspensions on the cab floor and the front axle have recently been fitted. A more elastic tyre wall combined with a low inflation pressure can improve operator comfort, especially on hard surfaces at high speed (Pessina, 1993). The type of seat suspension, and above all its correct adjustment...
(related to the driver’s mass), also have a big impact on the level of vibration (Nuccitelli et al., 1993). Furthermore, the ride comfort is also very sensitive to the stiffness of the rear suspension of the cab (Uys et al., 2007): the hydropneumatic suspension can significantly improve the situation (Hammes and Meyer, 2010). In particular, the active or semi-active cab suspension is able to reduce the level of vibration with respect to traditional types (Deprez et al., 2005). Nevertheless, all these have only been applied on the latest wheeled tractors, especially on high-powered models. Unfortunately, conditions of agricultural crawler tractors are still very poor: at the moment, no cab or front axle suspension systems are provided, even on recent models. As a consequence, the vibration levels measured often widely exceed the limits provided by the official national standards. The manufacturers of crawler tractors are currently working on trying to improve the level of operator comfort, and are attempting to reduce both the production and the transmission of the vibration. Attention is being paid to both the low and high frequency parts of the spectrum. In the first case, the vibration is produced by the tractor travelling on hard or compacted surfaces and the seat suspension is designed to reduce its transmission. In the second, the vibration is generated by the running engine and gearbox; silent blocks fitted between the tractor body and the floor reduce their propagation. Also, some tractor parameters can influence the vibration level in the driving seat: the wheelbase and the distribution of mass in the cab, among others, play an important role.

Materials and methods

The Whole Body Vibration (WBV) in the driving seat of a group of crawler tractors produced by some leading Italian manufacturers with different technical characteristics were measured, recorded and compared. Three medium powered crawler tractors equipped with steel tracks were considered (A, B and C), each produced by a different Italian manufacturer. Their main technical characteristics are summarized in **Table 1**; all tractors were equipped with a seat with a mechanical suspension.

<table>
<thead>
<tr>
<th>Tested tractor</th>
<th>Seat suspension type</th>
<th>Seat suspension stiffness</th>
<th>Engine max power, kW</th>
<th>Mass, kg</th>
<th>Wheelbase, mm</th>
<th>Track width, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mechanical</td>
<td>max stiff, correct,</td>
<td>75.3</td>
<td>5470</td>
<td>1650</td>
<td>1350</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>max stiff, correct,</td>
<td>74.5</td>
<td>4900</td>
<td>1656</td>
<td>1300</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>max soft</td>
<td>72.5</td>
<td>4690</td>
<td>1650</td>
<td>1300</td>
</tr>
</tbody>
</table>

Given that very high vibration levels were recorded in the driving seat, a 4th tractor model (D, very similar to A) was tested in two versions arranged on different machines. In order to evaluate the level of vibration of a theoretically more stable and comfortable crawler machine, the traditional D(1) arrangement was compared with the D(2) version that was equipped with a seat with a pneumatic suspension and, above all, a 6-roller track instead of the conventional 5-roller version (**Figure 1**). The addition of one roller in the track system leads to an increase of 200 mm of the wheelbase: from 1650 to 1850 mm. Furthermore, to evaluate the influence of a correct (or incorrect) seat suspension setting, all the tests (carried out in 3 runs for each testing condition) were repeated, adjusting the suspension to the most stiff (equivalent to an operator mass of 130 kg), the correct (90 kg) and the most soft (50 kg) settings (**Table 2**).
Figure 1. Tractor D in version D1 (left) equipped with a 5-roller track support and seat with mechanical suspension, and in version D2 (right) with a 6-roller track support and seat with pneumatic suspension.

Table 2. Settings of the tested tractor D, in version D(1) with 5-roller track support and mechanical seat suspension, and version D(2) with 6-roller track support and pneumatic suspension.

<table>
<thead>
<tr>
<th>Tested tractor</th>
<th>Track support rollers, no.</th>
<th>Seat suspension type</th>
<th>Seat suspension setting</th>
<th>Mass, kg</th>
<th>Wheelbase, mm</th>
<th>Track width, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>5</td>
<td>mechanical</td>
<td>max stiff, correct,</td>
<td>5470</td>
<td>1650</td>
<td>1350</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>max soft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>6</td>
<td>pneumatic</td>
<td></td>
<td>5620</td>
<td>1850</td>
<td>1350</td>
</tr>
</tbody>
</table>

Two paths, each approximately 200 m long, were selected on a sloping farm track of compacted clay soil. These were run separately (the first uphill and the second downhill) at approximately 1 min each at a speed of 7 km/h.

The 3 tractors A, B and C, were tested uncoupled. In order to simulate daily working conditions, the two tractors D1 and D2 were coupled with a ripper (working width 1.80 m, typical working depth 0.60 m, mass 480 kg) hitched to the three-point linkage. WBV values were measured on the driver’s seat, using a triaxial accelerometer Dytran 5313M2 (mass 11 g, sensitivity 99.3 mV/g) operated by a 4-channel human vibration meter (Quest Technologies HAVPro) complying with ISO 8041:1990 standards. Data elaboration took into consideration the provisions of the European Union Directive No. 2002/44/EC (European Commission, 2002) concerning:

\[a_{w\text{max}} = \max (1.4 \ a_{wx}; 1.4 \ a_{wy}; a_{wz}) \]

As an alternative, the ISO 2631-1:1997 standard was considered, as follows:

- single axes values: \(a_{wx}; a_{wy}; a_{wz} \)
- overall root mean square (RMS) value:

\[a_{\text{wsum}} = \left[(1.4 \ a_{wx})^2 + (1.4 \ a_{wy})^2 + a_{wz}^2 \right]^{1/2} \]
The Italian Decree No. 81/2008 currently in force concerning evaluation of vibration (referred to in the previous Italian Decree No. 187/2005 and subsequent European Community Directive No. 2002/44/CE), provides for the comparison of the limits with the $a_{w\text{max}}$ values obtained. However, the present study considered the single axes (in terms of $1.4 \ a_{wx}$; $1.4 \ a_{wy}$; a_{wz}) and the $a_{w\text{sum}}$ values because they seem to better represent the real disturbance to the driver caused by vibrations.

Results and discussion

Results recorded on the 3 comparable traditional tractors are shown in Figure 2. For clarity, only the z (vertical) axis values have been reported, as this is the direction that offers the most effective damping action of the seat suspension device. Furthermore, the vibration in the vertical direction is the most dangerous for the drivers because it affects the vertebral column and, in particular, the intervertebral elasticity of the discs. In general, levels are quite high, exceeding 0.5 m/s² in 94% and 1.0 m/s² in 66% of the cases examined. This confirms the seriousness of the situation considering that the real $a_{w\text{sum}}$ levels are even higher due to the contribution of the vibration in the two other horizontal axes, x (longitudinal) and y (transversal). Tractors A and B showed similar levels, but vehicle C was the least comfortable showing remarkable differences in comparison with the others in all the test conditions.

The seat suspension setting dramatically influenced the levels: both the most soft and stiff settings revealed quite a high vibration increase in tractors A and B. As expected, the worst results were recorded with the highest stiffness, but surprisingly also the softest showed a poor comfort level. In this last case, the vibration increase was probably due to the frequent peaks recorded when the suspension spring reaches its maximum displacement in compression and, therefore, its damping action is completely interrupted.

The fact that there was reduced comfort with an incorrect seat setting is quite remarkable, reaching an increase that ranges from approximately 90% and 270%. This confirms the importance of a correct adjustment in order to assure the best suspension performance.

Tractor C highlighted a poor general comfort level and small differences among the different suspension adjustments; the highest values were measured at the most soft setting. However, the increase in suspension stiffness did not cause any significant worsening of the damping quality, also when compared with the correct setting.

No great difference was observed between the two paths considered for the tests (uphill and downhill on a sloped farm track of compacted clay soil). In spite of the constant travelling speed, the uphill path was less smooth than the downhill because the levels measured were always higher.

This first set of results were alarming and suggested the need for a new series of measurements to be taken in order to identify the improvements that could be made. The first modification was to change the driver’s seat. A model equipped with a pneumatic rather than a mechanical suspension was so fitted. In fact, it is widely recognized that the pneumatic spring provides superior damping. Second, the fitting of a 6-roller track, instead of the traditional type with 5 rollers, introduced two potential benefits: a) an increase in the wheelbase (+12%) and, consequently, an improvement in the longitudinal stability of the tractor; b) an increase in the total track area in contact with the ground which is better able to absorb the unevenness of the soil when travelling. Figures 3 and 4 show the weighted vibration levels recorded according to the two paths: uphill (routher) and downhill smoother). The correct adjustment of the stiffness of the suspension provided better results in the z (vertical) axis, especially travelling uphill; the two other horizontal directions of vibration
performed better, considering the downhill path, for the mechanical seat. This was probably due to the involuntary compensatory movements of the driver’s body, trying to maintain the best equilibrium when encountering an uneven surface.

Figure 2. Weighted vibration levels measured on z axis (a_wz) on conventional tractors A, B and C, tested with different seat suspension adjustments, travelling uphill and downhill. A theoretical comparison with values stipulated by the Italian Decree No. 81/2008 is shown. Exposure action value, 0.5 m/s²; exposure limit value, 1.0 m/s². RMS, root mean square.

No great difference was seen between the levels recorded in the 3 axes of the seat with pneumatic suspension (combined with the 6-roller track fitting). Values were always lower (in some cases remarkably lower) than those recorded on the mechanical seat and 5-roller track combination, both travelling uphill and downhill. This is quite a good result, considering also that, on adopting the most favourable arrangement, none of the single axes vibration levels measured exceeded 1.0 m/s².
Furthermore, the y (transversal) axis showed lower values when compared to the x axis (longitudinal); this is probably due to the coupling of the ripper hitched at the 3-point linkage, acting as a sort of spring able to stress the pitch movement of the tractor body. Figure 5 shows one of the several possible comparisons between the uphill and downhill time history.

![Figure 4](image1.png)

Figure 4. Weighted vibration levels measured on tractors D(1) and D(2), travelling downhill. A theoretical comparison with values stipulated by the Italian Decree No. 81/2008 is shown. Exposure action, 0.5 m/s²; exposure limit, 1.0 m/s². RMS, root mean square.

![Figure 5](image2.png)

Figure 5. Time history of the vibration measurements on tractor D(1), equipped with 5-roller track support, travelling uphill and downhill, with the maximum stiff setting of the mechanical suspension of the seat. RMS, root mean square.

The z (vertical) axis highlighted the highest values moving uphill, while downhill the levels were generally lower, due to the smoother surface. Furthermore, the level peaks were clearly higher in the uphill path, confirming the unevenness of the ground. Conventional tractors A, B and C (Table 3) showed very high overall RMS (awsum) levels both travelling uphill and downhill. In a theoretical comparison with values stipulated in the Italian Decree No. 81/2008, all values except one exceeded the exposure limit, even with the correct seat suspension adjustment. However, the values recorded on the correctly adjusted seats of tractors A and B were slightly higher than 1.0 m/s², while the increase in the maximum stiff and soft settings ranged from 60-100% travelling uphill and from 10-70% travelling downhill.
Performance on tractor C was always poor, and there was no significant difference even when the setting was changed. The results obtained on the two versions of tractor D are particularly interesting (Table 4). The combination of the 6-roller tracks and the pneumatic suspension of D(2) always performed better than D(1) equipped with the 5-roller tracks and mechanical seat suspension. The reduction in vibration is quite remarkable, ranging from 30-55%. Again, with the best combination, both the uphill and downhill absolute values are very close to the exposure limit, and the difference among correct and incorrect seat suspension adjustments is markedly reduced. This represents a sort of added value, because a possible oversight when adjusting the setting does not necessarily translate into less comfortable driving conditions.

Table 3. Overall root mean square (a_{wsum}, m/s²) values measured on conventional crawler tractors A, B and C. In a theoretical comparison with value stipulated in the Italian Decree No. 81/2008, all values exceeded the exposure limit except values in italics which exceeded the exposure action but not the exposure limit.

<table>
<thead>
<tr>
<th>Seat susp. adjustment</th>
<th>uphill A</th>
<th>uphill B</th>
<th>uphill C</th>
<th>downhill A</th>
<th>downhill B</th>
<th>downhill C</th>
</tr>
</thead>
<tbody>
<tr>
<td>max stiff</td>
<td>2.00</td>
<td>1.90</td>
<td>1.83</td>
<td>1.69</td>
<td>1.12</td>
<td>1.85</td>
</tr>
<tr>
<td>correct</td>
<td>1.20</td>
<td>1.07</td>
<td>1.92</td>
<td>1.06</td>
<td>0.88</td>
<td>1.83</td>
</tr>
<tr>
<td>max soft</td>
<td>1.68</td>
<td>1.60</td>
<td>2.29</td>
<td>1.40</td>
<td>1.28</td>
<td>1.89</td>
</tr>
</tbody>
</table>

Table 4. Overall root mean square (a_{wsum}, m/s²) values measured on D(1) and D(2) tractors with different track support rollers and type of seat suspension. In a theoretical comparison with values stipulated in the Italian Decree No. 81/2008, all values exceeded exposure limit except values in italics which exceeded the exposure action but not the exposure limit.

<table>
<thead>
<tr>
<th>Seat susp. adjustment</th>
<th>uphill 5 rollers and mech. susp.</th>
<th>uphill 6 rollers and pneum. susp.</th>
<th>downhill 5 rollers and mech. susp.</th>
<th>downhill 6 rollers and pneum. susp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>max stiff</td>
<td>2.51</td>
<td>1.13</td>
<td>1.47</td>
<td>1.03</td>
</tr>
<tr>
<td>correct</td>
<td>1.81</td>
<td>1.14</td>
<td>1.50</td>
<td>0.85</td>
</tr>
<tr>
<td>max soft</td>
<td>1.89</td>
<td>1.29</td>
<td>1.28</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Conclusions
Drivers of agricultural crawler tractors run quite a high risk of discomfort from vibration. The average speed on a typical farm track is about 7 km/h and, at this speed, vibration levels always exceed 0.5 m/s², and very frequently even 1.0 m/s². Predictably, the situation will worsen at a higher travelling speed, up to 15 km/h, the maximum speed for crawler tractors. Operative factors related to the field itself could also lead to poor conditions of comfort, for example, due to the unevenness of the surface to be worked and the fact that the attached machinery will also contribute to the overall vibration level.

The type of seat suspension dramatically influences the level of comfort. Quite a good result was obtained with a seat equipped with a pneumatic rather than a mechanical suspension. The tests were repeated on two similar tractors each with a different track roller support and type of seat suspension. The 6-roller version performed better than the 5-roller. This was probably due to the higher stability provided by a longer wheelbase and the increased surface of contact with the ground that were better able to absorb the unevenness of the soil. Unfortunately, it
It was not possible to evaluate separately the individual contribution of the number of rollers and the type of seat suspension. As expected, the attachment of implements at the 3-point linkage increases the level of vibration, especially on the x (longitudinal) axis, probably because the pitch movement of the tractor is stressed. A theoretical comparison was made with values stipulated by the Italian Decree No. 81/20008. In general, the overall RMS vibration (a_{wsum}) levels recorded were always higher than the exposure action value (0.5 m/s²), and also frequently exceeded the exposure limit (1.0 m/s²). In order to assure a suitable reduction in drivers' risk, these results would require a reduction to be made in the total hours worked with respect to the traditional 8 h/day, sometimes with quite a radical cut of up to 2 h/day or even more. This is hardly realistic and, therefore, further measures to reduce vibration levels on crawler tractors are urgently required. Possible solutions could include the universal adoption of rubber tracks and/or the fitting of silent blocks on the cab floor and suspension devices on one or both axles.

References

